Patricia Losada-Pérez, Ozge Polat, Atul N. Parikh, Erkin Seker, and Frank Uwe Renner, Biointerphases 13, 011002.1-011002.8, 2018
Nanoporous gold (np-Au) is a nanostructured metal with many desirable attributes. Despite the growing number of applications of nanoporous materials, there are still open questions regarding their fabrication and subsequent surface functionalization. For example, the hydrophobic nature of gold surfaces makes the formation of planar supported lipid layers challenging. Here, the authors engineer the interface between np-Au and 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid layers using well-differentiated approaches based on vesicle adsorption and solvent exchange methods. The results reveal that the nanotopography of the np-Au surface plays a clear role in the vesicle adsorption process. Compared to vesicle adsorption, the solvent exchange method proves successful in the formation of planar supported lipid bilayers in both np-Au and planar Au surfaces, being less sensitive to the surface morphological features. The influence of nanostructured surfaces on lipid layer formation is determined by the driving mechanisms behind each process, i.e., the balance of adhesion and cohesion forces in vesicle adsorption and lyotropic lipid phase transitions in solvent exchange, respectively. A better understanding of such interactions will contribute to the development of a variety of applications, from electrochemical biosensors to drug screening and delivery systems, using nanoporous gold coated with stimuli-responsive lipid layers.
DOI: 10.1116/1.5010249